5

Using XLE in an Intelligent
Tutoring System

RicHARD R. BURTON

5.1 Introduction

I first met Ron Kaplan in 1973 while he was consulting at Bolt, Be-
ranek and Newman, Inc. on Bill Woods’ LUNAR natural language un-
derstanding project. He was finishing his dissertation at Harvard at the
time and also working with Martin Kay on what would become LFG
(Lexical-Functional grammar). I was working with John Seely Brown
on intelligent tutoring systems. Roughly, I was trying to get a com-
puter to teach students like good human tutors do. At the time, the
state-of-the-art means of communicating with students was teletypes
or character-based CRT display terminals. If you wanted to have a free
flowing interaction with students, natural language was pretty much
the only option. Thus began my interest in understanding natural lan-
guage.

In the next few years, I built a natural language interface for the
intelligent tutoring system SOPHIE that allowed a student to inter-
act with the computer to learn electronic troubleshooting (Brown et
al. 1982, Burton and Brown 1986). I was fortunate to be able to work
closely with Bill Woods’s Natural Language Understanding group. I
learned a lot about formalisms for representing information about lan-
guage and algorithms for manipulating them. They were working on
complex linguistic phenomena such as conjunction, relative clauses,
and the logical structure of quantification. As we started using SOPHIE
with real students, we encountered a different set of linguistic problems.

Intelligent Linguistic Architectures: Variations on themes by Ronald M. Kaplan.
Miriam Butt, Mary Dalrymple, and Tracy Holloway King (eds.).
Copyright (© 2006, CSLI Publications.

75

76 / RiCHARD R. BURTON

The students were not using particularly complex sentences. They were,
however, using conversational constructs such as ellipsis (“what about
T2?”) and pronominal reference (“What is it for T1?”), and making
plain old spelling mistakes (“What is the voltage at the base of the
power limiting transitor?”). Mostly the problems I faced were engi-
neering ones: incomplete language coverage for what students actually
said; the system not being fast enough; and poor semantic mapping
between existing domains and mine. In the end, the system worked
pretty well. Well enough to show that the idea of tutoring students in
natural language was possible, at least within a limited domain.

Eventually, I concluded that my goals and hence my problems were
sufficiently different from the ones driving natural language under-
standing that I should be using a different name to label my efforts. I
started calling my work natural language engineering. I characterized
natural language engineering as using current natural language ma-
chinery to provide a “natural language” interface to a computer appli-
cation. About this time, bit-mapped graphic displays were developed,
opening the possibility of graphical interfaces that were inexpensive,
easy to program and full of opportunities for instructional interfaces.
I stopped pursuing natural language interfaces and began developing
graphical user interfaces. I moved to PARC and was fortunate to able
to work with Ron for several years developing Interlisp-D. We each saw
Interlisp-D as a necessary platform for pursuing our research; natu-
ral language for him, graphical user interfaces and intelligent tutoring
systems for me.

A few years ago, I was approached by Acuitus, Inc. to provide natural
language input capability to a new digital tutor they were developing.
I had kept in touch with Ron and knew he had worked very hard
refining and developing his ideas about how computers should handle
natural language. I jumped at the chance to find out how much progress
Ron has made and to see what could be done with the three orders of
magnitude more computation that is available from today’s computers.
This paper describes my experiences using XLE in my most recent
natural language engineering effort.

5.1.1 An Intelligent Tutor for Network Administration

The current efforts are focused on building a computer-based course to
teach network administration. Our subject matter can be roughly char-
acterized as the networking fundamentals and troubleshooting tech-
niques necessary to find and fix any problems that would prevent a
user’s computer from being able to browse a web site. Behind this sim-
ple description lies a large body of content that includes computer and

UsING XLE IN AN INTELLIGENT TUTORING SYSTEM / 77

networking hardware, ethernet and internet protocols and their imple-
mentations, networking services, client applications, web servers, and
troubleshooting skills.

The course is a mixture of presentation of material, interactive activ-
ities to learn about commands, and most importantly, troubleshooting
exercises in which students find and fix problems on real (not simu-
lated) systems. The exercises are performed on a three-machine net-
work: a client machine with web browser, a server machine with a web
server, and a name server machine. During the exercises, a computer-
based tutor monitors their activities and provides help either when the
student asks for it or when the tutor decides to step in based on its
observations.

Our goal is for our digital tutor to do as well as an excellent human
tutor does when working one-on-one with a student. Figure 1 shows a
systems-level view of the tutor. It shows how the tutor monitors the
students actions and how XLE fits in.

5.2 Why Use Natural Language?

The tutor is written in Java and has (or could have) access to any
of Java’s interactive graphical and multimedia capabilities. On top of
all this, why go to all the trouble of accepting natural language? In
fact, the large majority of interactions that the tutor has with students
are multiple choice or short answer questions (which do not use natural
language). But there are some things that natural language can do that
are not available otherwise.

The primary advantage of natural language is that it forces artic-
ulation of ideas onto a blank slate. This creates a different learning
experience than multiple choice in which the listed choices define the
set. of allowable answers. The choices shape the student’s thinking and
allow them to use an elimination process rather than a creation pro-
cess when they are not sure of the answer. Further, having the students
express their thoughts in their own words is an important learning step.

In addition, natural language allows a much larger set of answers
than is feasible with multiple choice. Hundreds or thousands of alter-
native answers can be supported with no change to the interface.

Another reason for using natural language in the interface is that
learning how to express concepts and ideas about unix system admin-
istration/networking problems is one aspect of the curriculum. The
course is teaching students to be system administrators. Part of being
a system administrator is being able to write up what you found and
changed so that you can communicate with other system administra-

R. Burron

78 / RICHARD

FIGURE 1 System diagram of the digital tutor showing XLE.

UsInG XLE IN AN INTELLIGENT TUTORING SYSTEM /79

tors. Natural language interaction provides students with the opportu-
nity to practice their system administrator speak.

The final reason we pursued natural language is that eventually
we will want the tutor to be able to focus on meta-problem solving.
Schoenfeld (1992) has demonstrated that a distinguishing characteris-
tic of master mathematical problem solvers is awareness of their own
problem solving strategies. He has been able to teach this behavior
to undergraduates in a semester course. To get students to focus on
meta-problem solving, he reserves the right any time the students are
working on a problem to ask the following three questions:

+ What (exactly) are you doing? (Can you describe it precisely?)

. Why are you doing it? (How does it fit into the solution?)

. How does it help you? (What will you do with the outcome when
you obtain it7?)

We eventually want to incorporate this type of behavior into our
tutor and believe that interacting in natural language will be required
for this ability.

5.2.1 When to Use Natural Language

Having suggested reasons why natural language is critical, it is impor-
tant to keep in mind that these reasons do not apply to all interactions.
Many interactions are well handled by multiple-choice and short answer
questions. In fact, our initial prototype of the tutor did not include nat-
ural language at all. In the transcripts of trials with this prototype, we
looked for places where natural language might be particular useful.

The interaction that stood out as the least satisfying was when the
tutor asked the student “what do you think is wrong with the system?”.
In most sessions, the tutor asks this question early in a problem when
the student has performed some tests on the system but has not yet
attempted to fix anything. In this situation, the student may be almost
ready to fix the problem, totally lost, or anywhere in between. Thus,
responding accurately to what the student says is critical for the tutor
to start off in the right direction.

Without natural language, this interaction was handled as a multi-
ple choice question with 13 possible answers. This seemed like a good
place for natural language. So, we decided to begin our use of XLE by
handling student answers to this question.

5.2.2 The Range of Answers

Our tutor has a model of the things that can go wrong with the sys-
tem. The model’s central structure is a hierarchy of functionally-based

80 / RicHARD R. BURTON

chunks called components. Since the problems all deal with ways brows-
ing a web page can be broken, the top level component is “the user’s
browser reads a web page from the server”. Just below the top com-
ponent are several things including “web service works on server”. An
example of a lower level component is “the client’s current IP address.”
Basically, the hierarchy represents all the things that can be broken in
the system.

Each component has a number of ways that it can be faulted. The
most common fault is just the generic “broken” but some components
can have more specific faults. For example, files are components and
may have a fault of “does not exist”.

This provides a very nice range of meanings for natural language
answers to the question “What’s wrong?”, that being the set of all
components and the ways they can be faulted. Any answer to the ques-
tion should identify a component and a fault mode.

Example Sentences and Their Interpretations
Here are some examples of responses to the question “what’s wrong
with the system?” and their interpretation as component/fault mode
pairs.

“You cannot send packets back and forth between the client and the

server by using their names.” means that the component “the client
connects to the server by name” is “broken”.

“The http server is not responding to requests.” means that the com-
ponent “web service works on server” is “broken”.

Both “The IP address for badmojo is incorrect in the hosts file on
goodmojo.” and “The apache server’s entry in the client’s hosts file
has the wrong IP address.” have the meaning that component “the IP
address of the server’s entry in the client’s hosts file” is “broken”.

5.3 How XLE is Used

When doing natural language understanding for SOPHIE in the 1970s,
the starting point was a string of characters. This time around, XLE?!
allowed me to start with the deep structure functional groupings and re-
lationships between word meanings in the sentence called f-structures.
This is a significant improvement. To get a sense of how large an im-
provement this is, let’s look at an example of an f-structure.

IWhen I use the term XLE, I am referring to both the XLE parsing/generating
framework and to the ParGram English grammar (Crouch et al. 2006, Kaplan et
al. 2004, Riezler et al. 2002).

Using XLE IN AN INTELLIGENT TUTORING SYSTEM / 81

5.3.1 Sample F-Structure

Let’s consider the sentence “The apache server’s entry in the client’s
hosts file has the wrong IP address.” The f-structure produced by XLE
is shown in Figure 2 and directly represents the sentence’s functional
relationships.

There are many relationships shown in Figure 2 but the important
ones for our purposes are:

The top level is a ‘have’ relationship between an ‘entry’ and an
‘address’.
The ‘entry’ is for a ‘server’.
The ‘server’ is an ‘apache’ server.
The ‘entry’ is ‘in’ a ‘file’.
The ‘file’ is a ‘hosts’ file.
The ‘file’ is a ‘client’ file.
The ‘address’ is an ‘ip’ address.
The ‘address’ is ‘wrong’.

XLE includes the ability to specialize existing grammars, lexicons
and morphologies (Kaplan et al. 2002). When I was getting started,
Tracy King used this capability to create a grammar with a few do-
main specific features. For example, the grammar was modified to make
NP an acceptable top level constituent. (Since we are asking “what’s
wrong?”, it is reasonable to accept a noun phrase as being the thing
that is wrong.) Another modification was an addition to the lexicon
to allow unix specific features. As can been seen from Figure 2, the f-
structure contains lexical information about the words in the sentence.
By far the vast majority of this information comes from standard fea-
tures in the lexicon such as HUMAN, NUM and PERS. The domain
specific features shown in Figure 2 are that ‘hosts’ is a unix configura-
tion file (unix-cfile) and ‘apache’ is a unix application (unix-app). The
resulting collection of relationships provides a very good beginning to
understanding the meaning of this sentence.

Initial Corpus

To guide development of the tutor’s natural language understanding
component, I created a corpus of 810 sentences. It was basically all
the interestingly different ways I could think of to say how each of the
fifty components was broken. Then I put the corpus through XLE.?
After debugging the domain specific grammar, morphology and lexicon
additions, only four of the 810 sentences had parsing difficulties. I never

2] was using the March 2005 release of XLE with a slightly modified ParGram
English grammar from November 2004.

82 / RICHARD R. BURTON

“the apache server's entry in the client's hosts file has the wrong IP address*®

[PRED "have<[80:entryl, [292:address)s'
PRED 'entry’ '|
[[RED 'in<[228:filels]
Fm tfile'
f '
177 'RED 'hosta
MOD §;359NTYPE [SYN proped
1401 -, NUM sg, PERS 3, UNIX-TYPE unix-cfil
CHECK [LEX-SOURCE moxphology]
NTYPE [SYN commor
[167|PRED ‘'client’
ADJUNCT 0Bd i:g CHECK [LEX-SOURCE countnoun-le:
1182 oo Em [comon count) Il
1187 YN common
SPEC [POSS o)
127 RED ‘the’
228
i 1132[°PEC ["“ ET-TYPE def]]
4981
3614 89, PERS 3
3618 | 4999["”"
|uBg 205 4209|CASE obl, NUM sg, PERS 3
5463[PSEM (Lo}
5473[PTYPE sem
& i
CHECK [LEX-SOURCE morphology
NTYPE [NSYN commor]
[fPRED 'server' 1
16 PRED ‘'apache'
pOD §38[NTYPE [NSYN proped
70 BB61 -, NUM 82g, PERS 3, UNIX-TYPE unix-a
79
{CHE - -
e s -;;: CK [LEX-SOURCE countnoun-led
s875hirypE [NSEM [COMMON coun
8880 SYH comman
1
80 PRED Tthe'
947 ones [iPRC []“ ET-TYPE def]
1021
5229 i 8898[NUM sg, PERS 3]
7744|CASE nom, NUM sg, PERS 3]
[PRED 'address’
.
fPRED 'ip'
344 ip
MOD 2150NTYPE SN proped
2049HUMAN -, NUM s3g, PERS 3
5
[307 'wrong'
IADJUNCT {1952|ATYPE attributive, DEGREE positiw
OBI 1958
5
23:; cHECK [LEX-SOURCE morphology
2452NTYPE fisYN commor
2687
PRED "the'
263 292[8PEC E:}:'r “TYPE def]]
1744 1888
2698 2690 obl, NUM sg, BERS 3
27:§ CHECK [SUBCAT-SOURCE cald-orid
75
7584[TNS-ASP [MOOD indicative, PERF -_, PROG -_, TENSE preg

7489

FIGURE 2 A sample f-structure from ParGram English for the sentence “The
apache server’s entry in the client’s hosts file has the wrong IP address.”

ICLAUSE-TYFE decl, PASSIVE -, VTYPE main

Using XLE IN AN INTELLIGENT TUTORING SYSTEM / 83

Component(var(1),EntryInFile)
ComponentFile(var(1),hosts)
EntryField(var(1),ipaddress)
OnMachine(var(1),clientmach)
OfMachine(var(1),servermach)
ComponentState(var(1),incorrect)

FIGURE 3 The property-object-value representation of the component
DestIPEntryInHosts.destination-server.machine-client.

expect to see a student enter any of these four. I considered this to be
an powerful testimonial to the capabilities of XLE.

Semantic Interpretation

Armed with usable parses, I began to explore how to get from f-
structures into a representation that would mean something to the
tutor. F-structures are still a good ways away from the component and
fault mode that we are looking for as the meaning for our domain. Cov-
ering this distance requires understanding a little bit more about how
components are structured.

Components are typed objects. Each type has a specific set of prop-
erties. For example, an EntryInFile is a type of component which rep-
resents an entry in a configuration file. It has properties:

OnMachine (the machine on which the file resides),
ComponentFile (the name of the file containing the entry),
OfMachine (the machine that the entry is about), and
EntryField (the field of the entry).

A component is determined by its type and the values of its properties.
An example of an EntryInFile component is “the IP address in the entry
of the server in the hosts file of the client.” (Internally, we refer to com-
ponents by name. This one’s name is DestIPEntryInHosts.destination-
server.machine-client.) This component’s properties are Component-
File="Hosts’, EntryField=‘TPAddress’, OnMachine=‘client’, and Of-
Machine="‘server’. It could be described by the English phrases “the
server’s address in the hosts file on the client machine”, or “the client
machine’s host file entry for the address of the server”. The property-
object-value triples representation is shown in Figure 3.

The first step in semantic interpretation is to go from the functional
relationships of f-structures to property-object-value triples that are
used to represent components. As one possible way of doing semantic
interpretation, XLE provides a transfer rule language {Crouch 2005,
this volume) that rewrites f-structures. We use transfer rules to match

84 / RicHARD R. BURTON

PRED(%s,have),
arg(%s,1,%cmpl), +Component (%cmpl,EntryInFile),
arg(%s,2,%cmp2), Component (%cmp2,IPAddress),
Mode (%cmp2, %mode)
==> ComponentState(Y%cmp1l,’mode),
EntryField(%cmpl,IPAddress).

FIGURE 4 An example transfer rule.

pieces of the f-structure and rewrite them into domain specific property-
object-value triples. Transfer rules are also used to remove f-structure
information that is not relevant to our domain. The resulting triples
are then used as constraints to determine the component.

The fault mode is represented by the property ComponentState. It is
determined by looking at different pieces of the f-structure. Modifiers
such as “working” or “good” get transferred into a “faultless” fault
mode. Modifiers such as “bad”, “broken”, “wrong” or “incorrect” are
transferred into a “broken” fault mode. If negation is present, the fault
mode is switched from “faultless” to “broken” or vice versa. If the
student enters a component as a noun phrase without modifiers rather
than a complete sentence, the fault mode is left out. (In this case, when
the triples are converted into a component, the tutor uses “broken” as
a fault mode because the student was asked “what’s wrong?”.)

5.3.2 Transfer Rules

Figure 4 provides an example of a transfer rule to make things a little
more concrete. It handles sentences roughly of the form “<entry> has
the <mode> IP address” such as “badmojo’s entry in goodmojo’s hosts
file has the wrong IP address.”

Transfer rules® consist of a matching part, followed by “==>", fol-
lowed by the replacement triples. Variables begin with a percent sign
(%) e.g., %s or %cempl. This rule is looking for an f-structure %s that
has a PRED=‘have’, a first argument (%cmpl) that is an EntryInFile
Component, and a second argument (%cmp2) that is an [PAddress
Component which also has a Mode.

When a transfer rule matches, all of the triples in the matching part
are removed and the replacement triples are added. That is, the match-
ing part is rewritten as the replacement part. Triples in the matching
part are not removed if they are marked with a plus sign (+) as is
done in the first Component clause in this rule. The effect of this rule

3The XLE documentation (Crouch et al. 2006) contains a complete description
of transfer rules and how to use them.

UsiNg XLE IN AN INTELLIGENT TUTORING SYSTEM / 85

2% “flatten” depth by changing set representation and remov-
ing intermediate features.
7% recognize machine names and equate terms that are the
same within our domain.
16% determine component parts from nouns and noun-noun
modifications.
7% produce triples from prepositional phrases and possessives.
4% handle fault modes.
7% build component triples from noun phrases.
41% build component and fault mode from main verb.
6% attach triples that are not connected to main component.
2% handle negation.
7% remove f-structure features that are not triples.

FIGURE 5 Functional groupings of transfer rules and the size of each group
listed in the order in which they are applied.

would be to add to the EntryInFile Component the properties Entry-
Field=‘IPAddress’ and ComponentState=%mode. %mode will be ei-
ther ‘faultless’ or ‘broken’ depending upon whether address was modi-
fied by ‘right’ or ‘wrong’ in the sentence.

Transfer rules are ordered. The first rule is applied, then the sec-
ond rule is applied to the output of the first rule, and so on. In our
example, the triples specifying Component and Mode are not part of
the f-structure produced by XLE. They are added as a result of ear-
lier transfer rules. The final set of rules removes the features of the
f-structure that are not property-object-value triples. The resulting set
of domain specific triples specify the component and fault mode.

The system has 1206 transfer rules to cover the corpus. They are
summarized in Figure 5. The transfer rule file is slightly more than
225K characters. The execution time is very acceptable. The average
time it takes to parse and interpret a sentence is about .6 seconds.

5.3.3 Getting to a Component

The set of triples that comes out of the application of the transfer rules
is then matched against the actual set of components to determine
which one was being referenced. This allows a separation between nat-
ural language issues and the practical issues of tutoring. For example,
if you have been following closely, you may have figured out the triples
for the phrase “the server’s IP address in the host name file on the
client” are:

86 / RiCHARD R. BURTON

Component(var(1),EntryInFile)
ComponentFile(var(1),hostname)
EntryField(var(1),ipaddress)
OnMachine(var(1),clientmach)
OfMachine(var(1),servermach).

However, it turns out the client’s host name file does not contain IP
addresses. It contains names. And it does not contain any information
about the server. Having the interface between the natural language
processing and the tutor be property triples gives the tutor the chance
to see this misconception and, possibly, address it with the student.

This separation is also useful in cases where the set of triples is
ambiguous in the sense that it represents more than one component.
For example, the sentence “the host name file is wrong” does not say
whether it is the client or the server host name file. Depending upon
the context, the tutor may want to ask the student which machine, or,
if it is clear that the student is focused on one machine, just fill it in.

5.3.4 Mishandled Sentences

After developing rules to get the correct semantics for 810 corpus sen-
tences, the natural language understanding component was incorpo-
rated into our tutor. The tutor logs all sentences that it receives. Any
that are not correctly handled are examined by hand.

The mishandled sentences we have seen fall into several categories.
Some are ‘word salad’ like “server no ip” or “below application broken”.
XLE produces useable f-structures for the large majority of the sensical
word salad we have seen so far. Our strategy for these has been that if
XLE provides a useful f-structure and a human can determine what the
student meant, transfer rules are written to pull out the semantics. If
either XLE did not produce a usable f-structure or we could not figure
out what the student meant, the system is not changed. In these cases,
the tutor responds as if the student had said “I don’t know” and asks
directed questions to get at what the student knows.

Many of the mishandled sentences contain misspellings. For the un-
ambiguously wrong ones, we added a character rewriting pre-pass. For
example, ‘resoution’ gets changed to ‘resolution’. This is effective at
picking up misspellings that have occurred before. We have left the
problem of incorporating a general spelling correction solution to the
future. Most of the other mishandled sentences are added to the corpus
and handled by adding transfer rules.

Over twelve months of development and testing with students, the
corpus has grown to about 1400 sentences. Its growth so far has been
nearly linear at a rate of about 50 sentences per month. Since the

Using XLE N AN INTELLIGENT TUTORING SYSTEM / 87

number of students testing the system has been increasing over time,
the rate of new sentences per student is decreasing. This is what we
expect. Adding 50 new sentences takes about four days of work. Most of
this time is spent adding transfer rules but it also includes substantial
time to test the new rules in the system.

5.4 Coverage Issues

5.4.1 Ambiguity

XLE is a very powerful system with an extensive lexicon and grammar
for English. While the sentences we have encountered so far do not
need all of this power, it is nice to know that if a student types in a
complex sentence, XLE will probably handle it. The downside of all
the coverage is ambiguity. To simplify the integration of XLE with
the tutor, we started with an assumption that the semantics would
not deal with multiple interpretations. The system uses the first (most
probable) parse (even if one of the later ones may be more correct)
and the transfer rules do not build multiple interpretations. This has
generally worked well.

A common place where ambiguity arises is nominal compounds such
as “http server type entry”. In our case this refers to the entry in the
httpd configuration file that has ‘servertype’ as a key. In our approach,
we need a transfer rule that puts these four nouns together to create the
right semantic triples. As long as the most probable parse always has
the same modifying relations, a single rule will work. For this phrase,
the most probable parse has ‘http’ modifying ‘server’, and ‘server’ and
‘type’ modifying ‘entry’. Thus we have a rule that matches the most
probable parse f-structure and creates the appropriate triples. We have
yet to encounter a case where we needed multiple rules for the nominal
compounds in our domain. If, in the future, the most probable parses
become more problematic, XLE provides a way of calculating the mea-
sures used to determine “most probable” and we could specialize it to
our corpus.

Just as our students occasionally type in sentences the tutor cannot
handle, they more rarely but still occasionally type in a sentence that
XLE has trouble with. One recent example is that in the f-structure
for “the problem is with the transport layer or farther down” ‘down’ is
associated with the top level ‘be’ relationship rather than with ‘farther’.
In this case, a transfer rule finds the ‘down’ clause and produces the
right meaning. This sort of thing has not happened often, and Tracy
King has fixed the problems in the next grammar release. Overall, there
are less than a dozen rules out of more than 1200 that look for misplaced
constituents.

88 / RicHARD R. BURTON

does -N XLE.

like -N XLE.
out -V XLE.
fail -N XLE.

work -N XLE.
wrong -N XLE.
can -N XLE; -V XLE.
name -A XLE.

on -A XLE.
but -ADV XLE; -N XLE.
or -ADV XLE; -N XLE.

and -ADV XLE; -N XLE.
FIGURE 6 List of the word senses that were removed.

5.4.2 Improving parsing by reducing coverage

More troublesome were cases where the first parse used a word sense
that clearly makes sense for English in general but not in our domain.
For example, the network administration domain does not use ‘out’ as
a verb nor ‘can’ as a noun, and ‘does’ is never used as the plural of
‘doe’. Fortunately, the XLE lexical routines have a way of removing
word senses. Figure 6 lists the words we have had to de-sense. Tracy
King suggested that much of the effort to find cases where removing
word senses might help could be automated by taking all the technical
terms, seeing what their morphological analyses are, and removing any
that seem unlikely. At this stage for us, doing it by hand has worked
fine.

5.4.3 Do Students Use Proper English?

One of the questions I was asked when I started was “will students type
real English sentences into your system?” Based on our experiences,
mostly the answer is yes. We have encountered abbreviations that were
new to us (e.g. idk for “I don’t know”) and if text messaging stays
popular we expect to get more. It is possible in XLE to create lexical
entries for most abbreviations that allows them to be parsed in the
normal way. As described earlier, we have also seen some word salad
but XLE produced a useable f-structure for most of that. So far, our
strategy of treating sentences that the system does not understand as if
the student had said “I don’t know” is producing appropriate tutorial
interactions.

UsiNg XLE IN AN INTELLIGENT TUTORING SYSTEM / 89

5.5 Conclusion

XLE and the ParGram English grammar are amazing! XLE has never
crashed during real use. The grammar has parsed everything we needed
it to parse. The transfer rules provide a good mechanism for translating
f-structures into domain concepts. There are a lot of them but they
are organized enough to continue to be extensible. In summary, our
experience with XLE has surpassed our expectations. We believe XLE
will continue to work well as our application grows.

My main concern with XLE is the amount that must be known to
use it. You need to know morphology and XLE’s language for represent-
ing morphology. You need to know lexicography and XLE’s language
for representing it. Thanks to Tracy King, I have not had to modify
the grammar but I did need to learn lots of details about the gram-
mar such as what the difference is between an adjunct_x, a mod x,
and an xcomp. (For our domain, adjunct x and mod_x are treated the
same. Adjunct_x and mod_x are deep structure relations while xcomp
is a surface structure relation. And mostly, we only need consider deep
structure relations.) If you want to include domain specific morphology,
you need to learn Finite State Morphology, a task that begins with the
book of the same name by Beesley and Karttunen (2003). You need
to decide how to do semantic interpretation. This will probably involve
learning yet another language such as the transfer rule language (which
I recommend). XLE will shortly contain a transfer rule based semantics
along with its English Grammar that promises to reduce the number
of transfer rules needed. This will help.

Much of the application effort for XLE has been targeted at natu-
ral language translation. And I suspect that XLE’s learning curve in
this application is less. From the standpoint of a builder of interactive
applications, XLE is a collection of well built, mostly complete parts
that can be assembled in different ways. Each application needs to be
custom built. We have yet to discover the right point of view on natural
language use in interactive applications to make it easier to use. But
until we do, XLE has the workbench of tools and parts to make any
natural language engineer happy.

Acknowledgments

This paper is dedicated to Ron Kaplan for many years of warmth,
friendship and good ideas. Thanks for the progress on all the intractable
problems. This work was supported in part by the Defense Advanced
Projects Agency within the DARWARS program (Contract #N00014-
030C-0295). I would like to express gratitude to Ralph Chatham for his

90 / RicHARD R. BURTON

support. Special thanks to Tracy King for her extensive, quick, knowl-
edgeable support and for helping me get started with a customized
grammar. Thanks to Tracy King, Rich Levinson and an anonymous
reviewer for comments on this paper.

References

Beesley, Kenneth R. and Lauri Karttunen. 2003. Finite State Morphology.
Stanford, CA: CSLI Publications.

Brown, John S., Richard R. Burton, and Johan deKleer. 1982, Pedagogical,
natural language and knowledge engineering techniques in SOPHIE I, II
and III. In D. Sleeman and J. S. Brown, eds., Intelligent Tutoring Systems,
pages 227-282. New York, NY: Academic Press.

Burton, Richard R. and John S. Brown. 1986. Toward a natural language
capability for computer-aided instruction. In B. J. Grosz, ed., Readings
in Natural Language Processing, pages 605-625. Los Altos, CA: Morgan
Kaufmann.

Crouch, Richard. 2005. Packed rewriting for mapping semantics to KR. In
Proceedings of the 6th International Workshop on Computational Seman-
tics (IWCS-6), pages 103-114. Tilburg, The Netherlands.

Crouch, Richard, Mary Dalrymple, Ronald M. Kaplan, Tracy H. King,
John T. Maxwell, III, and Paula Newman. 2006. XLE Documentation.
Palo Alto Research Center.

Kaplan, Ronald M., Tracy H. King, and John T. Maxwell, I1I. 2002. Adapting
existing grammars: The XLE experience. In Proceedings of the 19th Inter-
national Conference on Computational Linguistics (COLING’02), Work-
shop on Grammar Engineering and Evaluation, pages 29-35. Taipei, ROC.

Kaplan, Ronald M., Stefan Riezler, Tracy H. King, John T. Maxwell, III,
Alexander Vasserman, and Richard Crouch. 2004. Speed and accuracy in
shallow and deep stochastic parsing. In Proceedings of the Human Lan-
guage Technology Conference and the 4th Annual Meeting of the North
American Chapter of the Association for Computational Linguistics (HLT-
NAACL’04), pages 97-104. Boston, MA.

Riezler, Stefan, Tracy H. King, Ronald M. Kaplan, Richard Crouch, John T.
Maxwell, III, and Mark Johnson. 2002. Parsing the Wall Street Journal
using a Lexical-Functional Grammar and discriminative estimation tech-
niques. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL’02), pages 271-278. Philadelphia, PA.

Schoenfeld, Alan H. 1992. Learning to think mathematically: Problem
solving, metacognition, and sense-making in mathematics. In D. A.
Grouws, ed., Handbook for Research on Mathematics Teaching and Learn-
ing, chap. 15, pages 334-370. New York, NY: MacMillan.

